Conditionals

```java
import java.util.Scanner;

public class MaxCalculator {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        System.out.print("a=");
        int a = sc.nextInt();
        System.out.print("b=");
        int b = sc.nextInt();
        System.out.print("c=");
        int c = sc.nextInt();

        // find max of a,b,c
        int max = 0;
        if (a > b) {
            max = a;
            if (c > max)
                max = c;
        } else {
            max = b;
            if (c > max)
                max = c;
        }

        System.out.println("max = " + max);
    }
}
```

The switch statement

1. class OlympicGamesStats {
 String retrieveCity(int year) {
 String city;
switch(year) {
 case 1992:
 city = "Barcelona";
 break;
 case 1996:
 city = "Atlanta";
 break;
 case 2000:
 city = "Sydney";
 break;
 case 2004:
 city = "Athens";
 break;
 default:
 city = "unknown";
}
return city;

2. import java.util.Scanner;

public class OlympicGamesStatsTest {
 public static void main(String[] args) {
 OlympicGamesStats stats = new OlympicGamesStats();

 Scanner sc = new Scanner(System.in);
 System.out.print("Enter an year:");
 int year = sc.nextInt();

 String city = stats.retrieveCity(year);
 System.out.println("City which organised Olympic Games in " + year + ": " + city);
 }
}

For Loops

1. class Coin {
 public String flip() {
 String result;

 if (Math.random() <= 0.5)
 result = "head";
 else
 result = "tail";
}
2. public class CoinFlipper {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter number of flips: ");
 int times = sc.nextInt();

 Coin c = new Coin();
 int number_of_heads = 0;
 int number_of_tails = 0;

 for (int i=1; i <= times; i++) {
 String result = c.flip();
 if (result.equals("head"))
 ++number_of_heads;
 else
 ++number_of_tails;
 }

 System.out.println("Number of heads: "+number_of_heads);
 System.out.println("Number of tails: "+number_of_tails);
 }
}

While loops

1. class SellStocks {
 private double price;
 private int number_of_stocks;
 private double commission_rate;

 SellStocks(double price, int number_of_stocks, double commission_rate) {
 this.price = price;
 this.number_of_stocks = number_of_stocks;
 this.commission_rate = commission_rate;
 }

 public double calculate() {
 double total = price*number_of_stocks;
 total = total - total*commission_rate/100;

 return total;
 }
}

2. public class SellStocksTest {
public static void main(String[] args) {
 double price = -1;
 Scanner sc = new Scanner(System.in);

 while (price != 0) {
 System.out.print("Enter price: ");
 price = sc.nextDouble();
 if (price == 0)
 break;
 System.out.print("Enter number of stocks: ");
 int number = sc.nextInt();
 System.out.print("Enter commission rate: ");
 double commission_rate = sc.nextDouble();

 SellStocks st = new SellStocks(price, number, commission_rate);
 double amount = st.calculate();

 // display the amount obtained from selling stocks
 System.out.println("Amount from stock selling: "+ amount);
 }
}

Converting between different types of loops

1. public class Square {
 public static void main(String[] args) {
 int n = 10;
 int i = 1;
 while (i <= n) {
 System.out.println(i + " squared equals "+ i * i);
 ++i;
 }
 }
}

2. public class Square {
 public static void main(String[] args) {
 int n = 10;
 int i = 1;
 do {
 System.out.println(i + " squared equals "+ i * i);
 ++i;
 } while (i <= n);
 }
}
Nested loops

```java
public class SodaCanDrawer {
    public static void main(String[] args) {
        for (int i=1; i <= 4; i++) {
            for (int j=1; j <= 6; j++)
                System.out.print("O");
            System.out.println(); // insert a new line after each row
        }
    }
}
```

Break and Continue

The output of the program is:

```
j = 1
j = 3
j = 4
j = 1
j = 3
j = 4
j = 1
j = 3
j = 4
```

The null keyword

During execution an exception occurs:

```
Exception in thread "main" java.lang.NullPointerException
    at NullObjectsTest.main(NullObjectsTest.java:4)
```

A reference variable must point to an object before attempting to access fields or call methods on the object. Since `s` contains the value `null`, method `toUpperCase()` cannot be called on `null` and an exception will be generated during running the program.